VASIMR Plasma Engine

VASIMR is a high powered plasma engine being developed by Ad Astra Rocket Company in Houston. The VAriable Specific Impulse Magnetoplasma Rocket is a drive that creates propulsion by expelling ionized hyrdrogen plasma and uses superconductors to increase the strength of the magnetic field involved and maximize thrust.

VASIMR – [adastrarocket.com]

The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) system encompasses three linked magnetic cells. The “Plasma Source” cell involves the main injection of neutral gas (typically hydrogen, or other light gases) to be turned into plasma and the ionization subsystem. The “RF Booster” cell acts as an amplifier to further energize the plasma to the desired temperature using electromagnetic waves. The “Magnetic Nozzle” cell converts the energy of the plasma into directed motion and ultimately useful thrust.

Plasma Rocket Could Travel to Mars in 39 Days – [physorg.com]

But Ad Astra has bigger plans for VASIMR, such as high-speed missions to Mars. A 10- to 20-megawatt VASIMR engine could propel human missions to Mars in just 39 days, whereas conventional rockets would take six months or more. The shorter the trip, the less time astronauts would be exposed to space radiation, which is a significant hurdle for Mars missions. VASIMR could also be adapted to handle the high payloads of robotic missions, though at slower speeds than lighter human missions.

Next Generation Magnetoplasma Rocket Could be Tested on Space Station – [universetoday.com]

It sounds like an idea from the “let’s do something useful with the Space Station” department in response to recent criticism about the quality of science that is being carried out on the $100 billion orbiting outpost. Michael Griffin, attended the July 29th AirVenture show in Oshkosh and was asked about the status of NASA’s advanced space propulsion research. In response he outlined plans to begin testing the Vasimir on board the ISS within the coming years. This possibly means that Vasimir will undergo vacuum testing on the outside of the station. (NOTE: This is not a propulsion device for the Space Station itself, it will remain in Earth orbit for the rest of its years, regardless of the optimistic idea that it could become an interplanetary space vehicle.)

Mars, and Step on It – [airspacemag.com]

Not far from NASA’s Johnson Space Center in Houston, Franklin Chang Díaz, a former NASA astronaut and veteran of seven space shuttle flights, is developing an alternative to the nuclear thermal rocket. VASIMR, the Variable Specific Impulse Magnetoplasma Rocket, combines features of the high-thrust/low-specific-impulse chemical rocket, and the low- thrust/high-specific-impulse nuclear rocket. VASIMR is a plasma rocket. Instead of a combustion chamber, it uses three staged, magnetic cells that first ionize hydrogen and turn it into a super hot plasma, then further energize it with electromagnetic waves to maximize thrust. Chang Díaz promises his rocket could attain a speed of 31 miles a second, and would reduce a one-way trip to Mars from three months to one. His team has made slow progress on the concept since the late 1980s. Last fall, his VX-200 rocket prototype’s first stage, powered by argon, reached a milestone: a successful, full-power firing in his Webster, Texas lab. Having spent about $25 million from several government sources so far, and with equipment, lab space, and personnel from NASA, Chang Díaz is coming closer to a flight test. NASA is considering testing the rocket on the International Space Station, perhaps as soon as 2011 or 2012, where it may contribute to maintaining the huge laboratory’s orbit.

“The space program began the day humans chose to walk out of their caves,” says Chang Díaz. “By exploring space we are doing nothing less than insuring our own survival.” Chang Díaz believes that humans will either become extinct on Earth or expand into space. If we pull off the latter, he says, our notion of Earth will change forever.

Comments are closed.