Warning: Use of undefined constant add_shortcode - assumed 'add_shortcode' (this will throw an Error in a future version of PHP) in /nfs/c03/h04/mnt/49321/domains/hackingtheuniverse.com/html/wp-content/plugins/stray-quotes/stray_quotes.php on line 615

Warning: Use of undefined constant MSW_WPFM_FILE - assumed 'MSW_WPFM_FILE' (this will throw an Error in a future version of PHP) in /nfs/c03/h04/mnt/49321/domains/hackingtheuniverse.com/html/wp-content/plugins/wordpress-file-monitor/wordpress-file-monitor.php on line 39
Ultra Light Absorber

Ultra Light Absorber

Researchers at the Huygens Laboratory in Leiden University in the Netherlands have demonstrated that at a very thin level of thickness, NbN (niobiumnitride) can absorb nearly 100% of light. The ideal substance for photovoltaic solar energy conversion is something that absorbs almost all radiation and is thin enough to collect electrical energy efficiently. Most recent attempts to accomplish this have produced only 50% absorbtion rates.

Ultra-thin material absorbs all the light

This discovery gave Driessen and De Dood the idea for building a special detector. They want to use this detector to view individual light particles, photons. To date this has been very difficult because the absorption was not high enough. The most important part of the detector is a lattice of ultra-absorbent NbN filaments. When an s-light particle falls on the lattice, it is absorbed. A p-particle is reflected. This p-particle can then in turn be collected by a second detector so that all the light is detected. Calculations show that the wavelength (colour) of the light particle has hardly any influence. The detector can therefore also be used for particles with completely different wavelengths, such as detection systems for telecommunications and infra-red equipment.

Leave a Reply

You must be logged in to post a comment.