Warning: Use of undefined constant add_shortcode - assumed 'add_shortcode' (this will throw an Error in a future version of PHP) in /nfs/c03/h04/mnt/49321/domains/hackingtheuniverse.com/html/wp-content/plugins/stray-quotes/stray_quotes.php on line 615

Warning: Use of undefined constant MSW_WPFM_FILE - assumed 'MSW_WPFM_FILE' (this will throw an Error in a future version of PHP) in /nfs/c03/h04/mnt/49321/domains/hackingtheuniverse.com/html/wp-content/plugins/wordpress-file-monitor/wordpress-file-monitor.php on line 39


Fluidics deals with using fluid flow control (or fluid dynamics) to accomplish operations similar to digital and analog electronic operations. A flow of fluid can be deflected by a small change in pressure applied to one side of the flow. Devices that use this idea can be constructed to resemble the function of electronic components such as transistor flip-flops and amplifiers. Microfluidics involves the same principles applied at a sub-millimeter scale and nanofluidics operate at scales measured in nanometers.

NIST-Cornell team builds world’s first nanofluidic device with complex 3-D surfaces

Among the potential applications for this technology: the processing of nanomaterials for manufacturing; the separation and measuring of complex nanoparticle mixtures for drug delivery, gene therapy and nanoparticle toxicology; and the isolation and confinement of individual DNA strands for scientific study as they are forced to unwind and elongate (DNA typically coils into a ball-like shape in solution) within the shallowest passages of the device.

Nanofluidic devices are usually fabricated by etching tiny channels into a glass or silicon wafer with the same lithographic procedures used to manufacture circuit patterns on computer chips. These flat rectangular channels are then topped with a glass cover that is bonded in place. Because of the limitations inherent to conventional nanofabrication processes, almost all nanofluidic devices to date have had simple geometries with only a few depths. This limits their ability to separate mixtures of nanoparticles with different sizes or study the nanoscale behavior of biomolecules (such as DNA) in detail.

To solve the problem, NIST’s Samuel Stavis and Michael Gaitan teamed with Cornell’s Elizabeth Strychalski to develop a lithographic process to fabricate nanofluidic devices with complex 3-D surfaces. As a demonstration of their method, the researchers constructed a nanofluidic chamber with a “staircase” geometry etched into the floor. The “steps” in this staircase—each level giving the device a progressively increasing depth from 10 nanometers (approximately 6,000 times smaller than the width of a human hair) at the top to 620 nanometers (slightly smaller than an average bacterium) at the bottom—are what give the device its ability to manipulate nanoparticles by size in the same way a coin sorter separates nickels, dimes and quarters.

Researchers create first nanofluidic transistor, the basis of future chemical processors – [2005 – berkely.edu]

28 June 2005
BERKELEY – University of California, Berkeley, researchers have invented a variation on the standard electronic transistor, creating the first “nanofluidic” transistor that allows them to control the movement of ions through sub-microscopic, water-filled channels.

Leave a Reply

You must be logged in to post a comment.