Warning: Use of undefined constant add_shortcode - assumed 'add_shortcode' (this will throw an Error in a future version of PHP) in /nfs/c03/h04/mnt/49321/domains/hackingtheuniverse.com/html/wp-content/plugins/stray-quotes/stray_quotes.php on line 615

Warning: Use of undefined constant MSW_WPFM_FILE - assumed 'MSW_WPFM_FILE' (this will throw an Error in a future version of PHP) in /nfs/c03/h04/mnt/49321/domains/hackingtheuniverse.com/html/wp-content/plugins/wordpress-file-monitor/wordpress-file-monitor.php on line 39
Sensitive Synthetic Skin

Sensitive Synthetic Skin

Two research teams working independently (one from Stanford and one from UC Berkeley) have created prototypes of artificial human skin that are extremely sensitive. Both techniques use a thin rubber surface with an electronic substrate that can measure changes in electrical properties that result from pressure. The Stanford team used a dielectric thin film and the Berkeley team used nanowire transistors.

Stanford researchers’ new high-sensitivity electronic skin can feel a fly’s footsteps – [stanford.edu]

Stanford researchers have developed an ultrasensitive, highly flexible, electronic sensor that can feel a touch as light as an alighting fly. Manufactured in large sheets, the sensors could be used in artificial electronic skin for prosthetic limbs, robots, touch-screen displays, automobile safety and a range of medical applications.

Engineers make artificial skin out of nanowires – [berkeley.edu]

Engineers at UC Berkeley have developed a pressure-sensitive electronic material from semiconductor nanowires that could one day give new meaning to the term “thin-skinned.”

“The idea is to have a material that functions like the human skin, which means incorporating the ability to feel and touch objects,” said Ali Javey, associate professor of electrical engineering and computer sciences and head of the UC Berkeley research team developing the artificial skin.

The artificial skin, dubbed “e-skin” by the UC Berkeley researchers, is described in a Sept. 12 paper in the advanced online publication of the journal Nature Materials. It is the first such material made out of inorganic single crystalline semiconductors.

A touch-sensitive artificial skin would help overcome a key challenge in robotics: adapting the amount of force needed to hold and manipulate a wide range of objects.

Synthetic Skin Sensitive to the Lightest Touch – [ieee.org]

Two research groups, one at the University of California, Berkeley, and the other at Stanford, have independently made advances toward such a sensitive system. Their prototypes are as good as human skin at quickly detecting small amounts of pressure: Within 100 milliseconds, they can feel pressures ranging from 15 kilopascals to less than 1 kPa. (The gentlest touch you can feel is 1 kPa.) In the Revolutionizing Prosthetics program, funded by the Defense Advanced Research Projects Agency, a bionic hand needs to feel 0.1 newtons of force over a fingertip, which, if you assume it has an area of about 1 square centimeter, translates to a pressure sensitivity of 1 kPa.

The research teams reported their results on the Web site of the journal Nature Materials on 12 September. The two prototypes are built on the same idea: They contain a pressure-sensitive rubber layer whose electrical properties change in response to pressure, and they have an underlying matrix of transistors that detect this change. But the teams used different materials and mechanisms.

New artificial skin could make prosthetic limbs and robots more sensitive – [machineslikeus.com]

The light, tickling tread of a pesky fly landing on your face may strike most of us as one of the most aggravating of life’s small annoyances. But for scientists working to develop pressure sensors for artificial skin for use on prosthetic limbs or robots, skin sensitive enough to feel the tickle of fly feet would be a huge advance. Now Stanford researchers have built such a sensor.

By sandwiching a precisely molded, highly elastic rubber layer between two parallel electrodes, the team created an electronic sensor that can detect the slightest touch.

“It detects pressures well below the pressure exerted by a 20 milligram bluebottle fly carcass we experimented with, and does so with unprecedented speed,” said Zhenan Bao, an associate professor of chemical engineering who led the research.

The key innovation in the new sensor is the use of a thin film of rubber molded into a grid of tiny pyramids, Bao said. She is the senior author of a paper published Sept. 12 online by Nature Materials.

E-Skin: Nanotechnology’s Artificial Skin Breakthrough – [science20.com]

Artificial skin, dubbed “e-skin” by the researchers, is the first such material made out of inorganic single crystalline semiconductors.

It’s a pressure-sensitive electronic material made from semiconductor nanowires and this sort of touch-sensitive artificial skin would help overcome a key challenge in robotics: adapting the amount of force needed to hold and manipulate a wide range of objects.

“The idea is to have a material that functions like the human skin, which means incorporating the ability to feel and touch objects,” said Ali Javey, associate professor of electrical engineering and computer sciences and head of the UC Berkeley research team developing the artificial skin. “Humans generally know how to hold a fragile egg without breaking it. If we ever wanted a robot that could unload the dishes, for instance, we’d want to make sure it doesn’t break the wine glasses in the process. But we’d also want the robot to be able to grip a stock pot without dropping it.”

SEE ALSO:
Skintronics
TF Skin
Naked Clothes
Drexler Spacesuit
Wireless Body Area Network

Comments are closed.